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Abstract

We consider the two-particle discrete Schrödinger operator H with a periodic
potential perturbed by an exponentially decreasing interaction potential. This
operator can be considered as the Hamiltonian of the two-magnon states of
ferromagnets with periodically arranged impurities. The operator H can be
naturally decomposed in the direct integral of spaces that is related to the
analogous direct integral for the periodic operator. We show that the essential
spectrum of H in the cell coincides with the band spectrum of the corresponding
periodic operator. It is proved that for sufficiently small coupling constants
there exists a unique quasi-level (an eigenvalue or a resonance) near the non-
degenerate stationary points of eigenvalues of the periodic Schrödinger operator
with respect to the chosen component of the quasimomentum. The asymptotic
behavior of these quasi-levels for the coupling constant tending to zero is
investigated. We obtain the simple sufficient condition when a quasi-level is
an eigenvalue.

PACS numbers: 03.65.Ge, 02.70.Hm, 76.60.+g

1. Introduction

We consider the Hamiltonian on l2(Z2) given by

H = H0 + V (n) + W(n1 − n2) (1)

with n = (n1, n2) ∈ Z
2, where

(H0ψ)(n1, n2) = ψ(n1 + 1, n2) + ψ(n1 − 1, n2) + ψ(n1, n2 + 1) + ψ(n1, n2 − 1),

1751-8113/08/435205+11$30.00 © 2008 IOP Publishing Ltd Printed in the UK 1
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V (n) is a real function periodic in n1, n2 with period T > 0 (if V (n) is periodic in nj with
period Tj > 0, j = 1, 2, then we set T = T1T2), and W(n1) is a real function satisfying the
estimate

|W(n1)| � Ce−a|n1|, a > 0. (2)

We now discuss the physical interpretation of H. A two-magnon state for ferromagnets
(or antiferromagnets) may by written in the form

� =
∑

n1>n2, |n1−n2|=1

ψ(n1, n2)S
+
n1

S+
n2

|0〉 (3)

(see [1]). Here ψ(n1, n2) are amplitudes, S+
nj

is the atomic spin creation operator for the atom
located at the lattice position nj , and |0〉 is the ground state. The state � is the eigenvector of the
Heisenberg Hamiltonian [1]. By means of the Bethe ansatz, it can be proved (see [1]) that the
function ψ(n1, n2) satisfies the discrete Schrödinger equation of the form H0ψ = λψ, λ ∈ R.

Consider now a ferromagnet with periodically arranged impurities. In this case, under some
conditions (see [2]), the Schrödinger equation has the form (H0 + V (n))ψ = λψ, where
V (n) = U(n1) + U(n2) for a certain periodic function U. Further, in our approach, we have
the infinity sum in (3). Therefore instead of boundary conditions (see [1]), we introduce
the potential W(n1 − n2) describing the interaction between the one-magnon states. So,
we obtain the Hamiltonian of the form (1). Note that within this context, the function
ψ(n1, n2) is symmetric and, consequently, the function W(n1) should be even. A notion of
the quasimomentum (the system momentum) may be rigorously introduced by means of the
direct integral decomposition (see section 3).

The spectral properties and the eigenvalues of H with V = 0 were investigated in [3, 4]
for zero-range interactions. In the continuous case, the eigenvalues of the similar Hamiltonian
were studied in [5] also for delta potentials.

The aim of this paper is to investigate the spectrum and the asymptotic behavior of quasi-
levels (i.e., eigenvalues and resonances) of the operator H in the cell. We also obtain the
simple sufficient condition when a quasi-level is an eigenvalue.

We denote by σ(A) and σess(A) the spectrum and the essential spectrum of the operator
A, respectively.

2. Periodic operator

Let ω1 ⊂ Z
2 and let ω2 be a measurable subset of R

m. We denote by l2(ω1) ⊗ L2(ω2) the
Hilbert space of all measurable in k functions ϕ(n, k) defined on ω1 × ω2 such that

(ϕ, ϕ) =
∑
n∈ω1

∫
ω2

ϕ(n, k)ϕ(n, k) dk < ∞.

We apply the direct integral construction (see [6]) to our case. Let us introduce the
following unitary operator:

U0 : l2(Z2) → l2(�0) ⊗ L2(�∗
0), ϕ(n) 	→ T

2π

∑
m∈Z2

exp[−i(k,m)T ]ϕ(n + T m). (4)

Here �0 = [0, 1, . . . , T − 1]2 is the cell of periods and �∗
0 = [−π/T , π/T )2 is the cell

in the reciprocal lattice. A vector k is called a quasimomentum. We have

(U0ϕ)(n + T m, k) = exp[i(k,m)T ](U0ϕ)(n, k) (5)

thus (U0ϕ)(n, k) is a Bloch function.
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The direct integral is introduced as∫ ⊕

�∗
0

l2(�0) dk = l2(�0) ⊗ L2(�∗
0)

∼= (L2(�∗
0))

T 2
.

It is easy to show that U0HV U−1
0 = {HV (k)}k∈�∗

0
where the operators HV (k) = H0(k) + V (n)

act on l2(�0) similar to the operator HV (if either (n1 ± 1, n2) or (n1, n2 ± 1) does not belong
to �0 then we use (5)). Clearly, HV (k) is the matrix depending analytically with respect to k.

Consider the eigenvectors of the operator H0(k) of the form

ψm(n, k) = 1

T
exp

[
i

(
k +

2πm

T
, n

)]
, m ∈ �0

corresponding to the eigenvalues

λm(k) = 2

[
cos

(
k1 +

2πm1

T

)
+ cos

(
k2 +

2πm2

T

)]
.

These vectors form the orthogonal basis in l2(�0). Therefore the Green function (the matrix
of the resolvent R0(k, λ) = [H0(k) − λ]−1 of H0(k)) is given by

G0(n − m, k, λ) = 1

T

∑
μ∈�0

exp[i(k + 2πμ/T , n − m)]

2[cos(k1 + 2πμ1/T ) + cos(k2 + 2πμ2/T )] − λ
, (6)

where n,m ∈ �0.
We use the notation RV (λ) = (HV −λ)−1 and RV (k, λ) = [HV (k)−λ]−1 for the resolvent

of operators HV and HV (k), respectively. Denote by GV (n,m, λ) and GV (n,m, k, λ) the
Green functions of these operators. From the resolvent identity

GV (n,m, k, λ) = [1 + R0(k, λ)V ]−1G0(n − m, k, λ) (7)

it follows that GV (n,m, k, λ) is analytic in (k, λ) in a complex neighborhood of any point
(k0, λ0) ∈ R

2 × C ⊂ C
2 × C such that λ0 /∈ σ(HV (k0)). (In the case λ0 ∈ σ [H0(k0)] we use

the change λ 	→ λ + λ′, V 	→ V + λ′ such that λ0 + λ′ /∈ σ [H0(k0)].)
Note that according to (7) and (6) the Green function GV (n,m, k, λ) can be naturally

extended in n,m to Z
2 × Z

2 and, in addition,

GV (n + T μ,m, k, λ) = GV (n,m − T μ, k, λ) = exp[i(k, μ)T ]GV (n,m, k, λ). (8)

Lemma 1. If λ /∈ σ(HV ), then

GV (n,m, k, λ) =
∑
μ∈Z2

exp[−i(k, μ)T ]GV (n + T μ,m, λ) (9)

and

GV (n,m, λ) =
(

T

2π

)2 ∫
�∗

0

GV (n,m, k, λ) dk. (10)

Proof. Using (2) and (8), we get for n ∈ �0, μ ∈ Z[
U−1

0 RV (k, λ)U0ϕ
]
(n + T μ) = T

2π

∫
�∗

0

(
exp[i(k, μ)T ]

×
∑
m∈�0

GV (n,m, k, λ)
T

2π

∑
ν∈Z2

exp[−i(k, ν)T ]ϕ(m + T ν)

)
dk

=
(

T

2π

)2 ∑
m∈�0

∑
ν∈Z2

∫
�∗

0

GV (n + T μ,m + T ν, k, λ)ϕ(m + T ν) dk

=
(

T

2π

)2 ∑
m∈�

∫
�∗

0

GV (n + T μ,m, k, λ) dkϕ(m).

3
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Consequently, we have (10). Therefore

GV (n + μT,m, k, λ) =
(

T

2π

)2 ∫
�∗

0

exp[i(k, μ)T ]GV (n,m, k, λ) dk.

This proves (9). �

3. Two-body interaction

Now we pass to the new cell � = Z × �0 by means of the unitary operator

U : l2(Z2) → l2(�) ⊗ L2(�∗) ∼=
∫ ⊕

�∗
l2(�) dκ,

ϕ(n) 	→
(

T

2π

)1/2 ∑
μ∈Z

exp(−iκμT )ϕ[n + (μ,μ)T ].

Here �∗ = [−π/T , π/T ) and κ ∈ �∗ is the quasimomentum.
It is easily seen that operators

H(κ) = H0(κ) + V (n) + W(n1 − n2)

from the decomposition UHU−1 = {H(κ)}κ∈�∗ act on l2(�) analogously to the operator H
taking into account (for H0(κ)) the Bloch property

(Uϕ)[n + (T , T ), κ] = exp(iκT )ϕ(n, κ).

We use the following notation:

{H ′
V (κ)}κ∈�∗ = UHV U−1, {H ′(κ)}κ∈�∗ = UHU−1,

R′
V (κ, λ) = [H ′

V (κ) − λ]−1, R′(κ, λ) = [H ′(κ) − λ]−1.

Denote by G′
V (n,m, κ, λ) the Green function of the operator H ′

V (κ).
The following equality can be proved in the same way as formula (9):

G′
V (n,m, κ, λ) =

∑
μ∈Z

exp(−iκμT )GV [n + μT (1, 1),m, λ]. (11)

Lemma 2. The spectrum of H ′
V (κ) can be represented as

σ [H ′
V (κ)] =

⋃
k1+k2=κ

σ [HV (k)]. (12)

Proof. Let us choose the cell in the reciprocal lattice for HV (k) of the form

ω∗
0 = {−π/T � k1 � π/T ;−π/T � k1 + k2 � π/T }.

We have (see (4))

(U0ϕ)(n, k) = T

2π

∑
m1,m2∈Z

exp[−i(k1m1 + k2m2)T ]ϕ[n + T (m1,m2)]

= T

2π

∑
μ,ν∈Z

exp[−i(σμ + κν)T ]ϕ[n + T (ν, ν) + T (μ, 0)]

=
(

T

2π

)1/2 ∑
μ∈Z

exp(−iσμT )

×
{(

T

2π

)1/2 ∑
ν∈Z

exp(−iκνT )ϕ[n + T (ν, ν) + T (μ, 0)]

}
,

4
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where σ = k1, μ = m1 − m2, κ = k1 + k2, ν = m2. Thus U0 is unitarily equivalent to the
product of operators U ′U , where the unitary operator

U ′ : L2(� × �∗) → L2(�0 × �∗
0)

is defined by

(U ′ϕ)(n, σ, κ) =
(

T

2π

)1/2 ∑
μ∈Z

exp(−iσμT )ϕ[n + T (μ, 0), κ].

Hence the operators HV (k1, κ − k1) where k1 = σ ∈ [−π/T , π/T ) form the decomposition
of the operators H ′

V (κ) in the direct integral∫ ⊕

[−π/T ,π/T )

L2(�0) dk1.

Denote by λn(k1, κ − k1) the nth eigenvalue of HV (k1, κ − k1) counted in the increasing order
with their multiplicities. It follows from the perturbation theory that λn(k1, κ − k1) depends
continuously on k1. From this and [6] (theorem XIII.85) we get (12). �
Lemma 3. Suppose λ /∈ σ(H ′

V ). Then

G′
V (n,m, κ, λ) = T

2π

∫ π/T

−π/T

GV [n,m, (k1, κ − k1), λ] dk1. (13)

Proof. Using (11), (10) and the Bloch property of GV (n,m, k, λ), we have

G′
V (n,m, κ, λ) =

∑
μ∈Z

exp(−iκμT )

(
T

2π

)2 ∫
�∗

0

GV [n + μT (1, 1),m, k, λ] dk

=
(

T

2π

)2 2π

T

∫ π/T

−π/T

⎡
⎣(

T

2π

)1/2 ∑
μ∈Z

exp[−iμT (κ − k1)]

×
∫ π/T

−π/T

(
T

2π

)1/2

exp(iμT k2)GV (n,m, k, λ)dk2

]
dk1

= T

2π

∫ π/T

−π/T

GV [n,m, (k1, κ − k1), λ] dk1. �
Lemma 4. The function W(n1 − n2), as a multiplication operator, is the relatively compact
perturbation of H ′

V (κ).

Proof. The function GV [n,m, (k1, κ − k1), i] depends analytically on k1, hence its Fourier
coefficients (

T

2π

)1/2 ∫ π/T

−π/T

exp(−iμT k1)GV [n,m, (k1, κ − k1), i] dk1

exponentially decrease as |μ| → ∞. Using (13) and (2), we obtain∑
n∈�

∑
m∈�

|G′
V (n,m, κ, i)W(n1 − n2)|2

� C
∑
μ∈Z

∑
ν∈Z

∑
n∈�0

∑
m∈�0

∣∣∣∣
∫ π/T

−π/T

GV [n + (μT , 0),m + (νT , 0), (k1, κ − k1), i] dk1

∣∣∣∣
2

× exp(−a′|μ|) � C ′ ∑
μ∈Z

∑
ν∈Z

exp(−a′′|μ − ν|) exp(−a′|μ|) < ∞,

where a′, a′′ > 0. Thus W(n1 − n2)R
′
V (κ, i) is the Hilbert–Schmidt operator. �

5
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Theorem 1. The following relations

σess[H
′(κ)] = σ [H ′

V (κ)] =
⋃

k1+k2=κ

σ [H ′
V (k)]

are valid.

Proof. It follows from lemmas 1, 3 and chapter XIII.4 of [6]. �

4. Quasi-levels

We will treat the case where λ0 = λN(k10, κ − k10) is a non-degenerate eigenvalue of
HV (k10, κ − k10) corresponding to a normalized eigenvector ψN [n, (k10, κ − k10)]. It can
be assumed that λN and ψN depend analytically on k1 in some complex neighborhood of k10

(see [6]). In what follows, we suppose that

∂λN(k10, κ − k10)

∂k1
= 0,

∂2λN(k10, κ − k10)

∂k2
1

= 0.

Further, we assume that the number of points k1 = k10 such that λM(k1, κ −k1) = λ0 for some
M is finite and at these points

∂λM(k1, κ − k1)

∂k1
= 0.

In particular, the above conditions hold if the boundary point of some band of the spectrum
of HV (κ) is determined by λN(k1, κ − k1).

Set ξ = k1 − k10.

Lemma 5. (see [7]). Let U be a sufficiently small complex neighborhood of λ0. Then for any
λ ∈ U there exist two solutions ξj = ξj (λ), j = 1, 2 of the equation

λN(k10 + ξ, κ − k10 − ξ) = λ

such that ξ1(λ0) = ξ2(λ0) and ξ1(λ) = ξ2(λ) if λ = λ0. Moreover, there exists the function
ξ2 = μ(ξ1) analytically depending on λ ∈ U such that μ′(0) = −1.

Assume that ξ1(λ) > 0 if λ > λ0. In the following, we often use the parameter ξ1 = ξ1(λ)

instead of λ. Respectively, we use the notation G′
V (n,m, κ, ξ1) instead of G′

V (n,m, κ, λ), etc.
Let U be a sufficiently small complex neighborhood of zero. Then the functions

ξj (λ), j = 1, 2, generate the analytic covering V over U [8] of two sheets. These functions
form the unique analytic function ξ defined on V and ξ is the analytic continuation of ξ1 (or
ξ2). Further, sgn(Im ξ) corresponds to a certain sheet of V .

The following lemmas 6 and 7 give the different representations of the Green function
G′

V (n,m, κ, ξ1).
In the following lemma 6, we extend analytically the function G′

V (n,m, κ, ξ1) to U \ {0}
in ξ1 where U is a neighborhood of zero. We set

√
W = √|W |sgnW (only for W ).

Lemma 6. Let U be a sufficiently small complex neighborhood of zero. Then, for ξ1 ∈ U \{0},
we have

G′
V (n,m, κ, ξ1) = iψN [n, (k10, κ − k10)]ψN [m, (k10, κ − k10)]

ξ1∂2λN(k10, κ − k10)/∂k2
1

+ g(n,m, κ, ξ1),

where
√|W(n)|g(n,m, κ, ξ1)

√
W(m) is the l2(� × �)-valued analytic function in ξ1.

6
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For a proof, see the similar result (lemma 2) in [7] for the one-particle periodic (non-
discrete) Schrödinger operator.

Corollary 1. The operator-valued function
√|W |R′

V (κ, ξ1)
√

W extends to a complex
neighborhood of zero as a meromorphic function with respect to the parameter ξ1. Moreover,
this function takes its values in the set of Hilbert–Schmidt operators (see the proof of
lemma 4).

Remark 1. From the resolvent identity

[1 +
√

|W |R′
V (κ, ξ1)

√
W ]−1 = 1 −

√
|W |R′(κ, ξ1)

√
W (14)

and Fredholm theorems [6, 9] we deduce that the operator-valued function
√|W |R′(κ, ξ1)

√
W

is meromorphic in ξ1 in a neighborhood of zero and takes its values in the set of Hilbert–Schmidt
operators.

Remark 2. Suppose that V (n) = U(n1) + U(n2). Then we have λN(k1, κ − k1) =
λN1(k1) + λN2(κ − k10) where λN1(k1) (λN2(κ − k10)) are eigenvalues of the one-dimensional
Schrödinger operator h0(k1) + U(n1) (h0(κ − k1) + U(n2), respectively) in the cell [0, T − 1].
Here h0(k)(ψ)(n) = ψ(n + 1) + ψ(n − 1).

We put k1j = k10 + ξj , j = 1, 2.

Lemma 7. Let ξ1 = 0 be a sufficiently small complex number. Then the following equality
holds:

G′
V (n,m, κ, ξ1) = iψN [n, (k11, κ − k11)]ψN [m, (k11, κ − k11)]

∂λN(k11, κ − k11)/∂k1
ϑ(n1 − m1)

− iψN [n, (k12, κ − k12)]ψN [m, (k12, κ − k12)]

∂λN(k12, κ − k12)/∂k1
ϑ(m1 − n1) + γ (n,m, κ, ξ1).

Here ϑ(t) is the Heaviside function and γ satisfies the bound:

|γ (n,m, κ, ξ1)| � C exp(−σ |n1 − m1|), σ > 0.

The proof of the analogous result (for the periodic continuous Schrödinger operator) is
given in [10].

We say that the pole of the operator-valued function
√|W |R′(κ, ξ1)

√
W with respect to ξ1

(and also the corresponding value λ = λN(k10 + ξ1, κ − k10 − ξ1)) is the quasi-level of H ′(κ).
By virtue of (14) and analytic Fredholm theorem [9], a sufficiently small ξ1 = 0 is a

quasi-level if and only if there exists a nontrivial solution of the equation

ϕ = −
√

|W |R′
V (κ, ξ1)

√
Wϕ (15)

in l2(�).
Thus a quasi-level is an eigenvalue or a resonance.
Let ξ1 = 0 be a quasi-level. The number

dim ker[1 +
√

|W |R′
V (κ, ξ1)

√
W ]

is called the multiplicity of ξ1.
Let ε > 0 be a (small) parameter. Now we introduce the operator H ′

ε(κ) = H ′
0(κ) + εW

where H ′
0(κ) is taken from the decomposition UH0U

−1 = {H ′
0(κ)}κ∈�∗ .

Theorem 2. Suppose that

WN =
∑
n∈�

W(n1 − n2)|ψN [n, (k10, κ − k10)]|2 = 0. (16)

Then we have the following.

7
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(a) For all sufficiently small ε > 0 there exists a unique quasi-level λ = λN(k11, κ − k11) of
H ′(κ) of the multiplicity one.

(b) The following formula holds:

λ = λ0 − ε2W 2
N

2∂2λN(k10, κ − k10)
/
∂k2

1

+ O(ε3). (17)

(c) In addition to that, if

∂2λN(k10, κ − k10)/∂k2
1 · WN < 0,

then the quasi-level is the eigenvalue.

Proof. Using lemma 6, we rewrite (15) in the form

ϕ(n) = − iεϕN [n, (k10, κ − k10)]

ξ1∂2λN(k10, κ − k10)/∂k2
1

∑
m∈�

ϕ′
N [m, (k10, κ − k10)]ϕ(m) + εA(ξ1)ϕ(n), (18)

where ϕN = √|W |ψN, ϕ′
N = √

WψN , and A(ξ1) is the operator with the matrix −√|W |g√
W .

Set f = [1 − εA(ξ1)]ϕ for a sufficiently small ε. Then, by (18), f = CϕN where C = const.
Hence equation (15) has a nontrivial solution for ξ1 = 0 if and only if there exists a solution
of the algebraic equation

ξ1 = − iε{[1 − εA(ξ1)]−1ϕN, ϕ′
N }

∂2λN(k10, κ − k10)
/
∂k2

1

. (19)

It follows from lemma 6 that the operator-valued function A(ξ1) is analytic in a neighborhood
of zero. By virtue of the Rouche theorem, there exists a unique solution (quasi-level) ξ1 of
(19). Using (19) and the expansion of [1 − εA(ξ1)]−1 in the Taylor series, we obtain the
following formula:

ξ1 = ε

i∂2λN(k10, κ − k10)
/
∂k2

1

(∑
n∈�

W(n1 − n2)|ψN [n, (k10, κ − k10)]|2
)

+ O(ε2)

= εWN

i∂2λN(k10, κ − k10)
/
∂k2

1

+ O(ε2). (20)

By (20) and (16), we have ξ1 = 0. Further, from the equality ϕ = C(1 − εA(ξ1))
−1ϕN it

follows that the quasi-level multiplicity is equal to unity.
Now we prove the last statement of the theorem. Suppose that ϕ = 0 belongs to l2(�)

and satisfies (15). Then the function

ψ = −εR′
V (κ, ξ1)

√
Wϕ = −εR′

V (κ, ξ1)Wψ (21)

satisfies the equation H ′
ε(κ)ψ = λψ where λ = λN(k10 + ξ1, κ − k10 − ξ1). (Obviously,

ϕ = √|W |ψ). Therefore it will suffice to prove that ψ ∈ l2(�). By lemma 7, we have

ψ(n) = − iεψN [n, (k11, κ − k11)]

i∂λN(k11, κ − k11)/∂k1

×
∑

m∈�∩{m1<n1}
ψN [m, (k11, κ − k11)]

√
W(m1 − m2)ϕ(m)

+
iεψN [n, (k12, κ − k12)]

i∂λN(k12, κ − k12)/∂k1

×
∑

m∈�∩{m1�n1}
ψN [m, (k12, κ − k12)]

√
W(m1 − m2)ϕ(m)

− ε
∑
m∈�

γ (n,m, ξ1)
√

W(m1 − m2)ϕ(m). (22)
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Suppose n1 � 0. Using lemma 7, the Cauchy inequality and (2), we obtain∣∣∣∣∣
∑
m∈�

γ (n,m, ξ1)
√

W(m1 − m2)ϕ(m)

∣∣∣∣∣
2

� C
∑
m∈�

|γ (n,m, ξ1)|2|W(m1 − m2)| � C1

∑
m1∈Z

exp(−2σ |n1 − m1| − a|m1|)

= C1

⎛
⎝ ∑

m1�n1

exp[−2σ(m1 − n1) − am1] +
∑

0�m1<n1

exp[−2σ(n1 − m1) − am1]

+
∑
m1<0

exp[−2σ(n1 − m1) + am1] = C1(exp(2σn1)
exp[−(2σ + a)n1]

1 − exp[−(2σ + a)]

+ exp(−2σn1)
1 + exp[(2σ − a)n1]

1 − exp(2σ − a)
+ exp(−2σn1)

exp[−(2σ + a)]

1 − exp[−(2σ + a)]

)
.

(23)

This expression decreases exponentially as n1 → ∞. Evidently, the analogous result is true
for n1 � 0.

We note that from the equality

ψN(n, k) = −
∑
m∈�0

GV [n − m, k, λN(k)]V (m)ψN(m, k) (24)

and (6) it follows that

|ψN(n, k)| � exp(|Im k1||n1| + |Im k2||n2|) (25)

for k belonging to some complex neighborhood of k0 ∈ �∗
0.

Let n1 � 0 and let |ξ1| � δ < a/2 where a is taken from (2). From (25) and (2) we get∣∣∣∣∣∣
∑

m∈�∩{m1�n1}
ψN [m, (k1j , κ − k1j )]

√
W(m1 − m2)ϕ(m)

∣∣∣∣∣∣
� C

[ ∞∑
m1=n1

exp[(2δ − a′)m1]

]1/2

= C
exp[(2δ − a′)n1]

1 − exp(2δ − a)
, j = 1, 2.

(26)

By virtue of (22), (23), and (26) we obtain

ψ(n) = − iεψN [n, (k11, κ − k11)]

i∂λN(k11, κ − k11)/∂k1

×
∑
m∈�

ψN [m, (k11, κ − k11)]
√

W(m1 − m2)ϕ(m) + η+(n) (27)

for n1 � 0 where η+ ∈ l2(� ∩ {n1 � 0}). Similarly,

ψ(n) = − iεψN [n, (k12, κ − k12)]

i∂λN(k12, κ − k12)/∂k1

×
∑
m∈�

ψN [m, (k12, κ − k12)]
√

W(m1 − m2)ϕ(m) + η−(n) (28)

for n1 � 0 and η− ∈ l2(� ∩ {n1 � 0}).
9
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Using (6), we rewrite (24) as

ψN [n, (k1, κ − k1)] = − 1

T
exp {i[(k1, κ − k1), n]}

×
∑
μ∈�0

∑
m∈�0

exp[i(2πμ/T , n)] exp[−i((k1, κ − k1) + 2πμ/T ,m)]

2[cos(k1 + 2πμ1/T ) + cos(κ − k1 + 2πμ2/T )] − λN(k1, κ − k1)

×V (m)ψN [m, (k1, κ − k1)].

Therefore, |ψN | decreases exponentially (increases exponentially) as n1 → ∞ or
n1 → −∞ in the case Im n1k1 > 0 (in the case Im n1k1 < 0, respectively). Now the
last statement of the theorem is the consequence of (20), (27), (28), lemma 5 and the equalities
Im k1j = Im ξ1j , j = 1, 2. �

Remark 3. Under the conditions of theorem 2, the eigenfunction ψ(n) of the operator H ′(κ)

satisfies the estimate

|ψ(n)| � Ce−α|n|, α > 0

for n ∈ Z.

Remark 4. In the case V = 0,

G′
V (n,m, κ, λ) = − exp[ik(n − m)/2]√

λ2 − 16 cos2(κ/2)

[
g

(
λ

4 cos(κ/2)

)]|n−m|
,

where g(w) = w − √
w2 − 1. (This function is inverse of w = 1

2 (z + 1/z).) The formula (17)
can be rewritten as

λ = ±
(

4 cos(κ/2) +
ε2W0

8 cos(κ/2)

)
+ O(ε3),

where W0 = ∑
n1∈Z

W(n1). (Here ±4 cos(κ/2) are the boundary points of the spectrum of
H ′

0(κ).)

Remark 5. Suppose that

∂2λN(k10, κ − k10)/∂k2
1 · WN > 0.

Then Im ξ1 < 0 and ξ1 is the resonance. In addition, if∑
m∈�

ψN [m, (k1j , κ − k1j )]
√

W(m1 − m2)ϕ(m) = 0, j = 1, 2,

then the solution ψ(n) of (21) (the metastable state) increases exponentially as |n1| → ∞ (see
the proof of theorem 2).

5. Concluding remarks

Let H ′
ε(κ) be the Hamiltonian of the pairs of the interacting one-magnon states in a

ferromagnet with periodically placed impurities; here κ is a lattice quasimomentum and ε

is a coupling constant for the magnon–magnon interaction. Let us consider the periodic
discrete Schrödinger operator HV (k) (the Hamiltonian without the interaction) where k is a
periodic quasimomentum. Let λn0(k) be an eigenvalue of HV (k) such that (k10, κ − k10)

is a non-degenerate stationary point of λn0(k) with respect to k1. Then for any sufficiently
small ε there exist the unique quasi-levels (the eigenvalue or the resonance) of H ′

ε(κ) in some
neighborhood of λ0 = λn0(k10, κ−k10). We obtain the asymptotic formula for this quasi-levels
as ε → 0. We also find the simple condition when a quasi-level is an eigenvalue.
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