Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2008 J. Phys. A: Math. Theor. 41435205
(http://iopscience.iop.org/1751-8121/41/43/435205)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.152
The article was downloaded on 03/06/2010 at 07:17

Please note that terms and conditions apply.

Quasi-levels of the two-particle discrete Schrödinger operator with a perturbed periodic potential

L Y Baranova ${ }^{1}$ and Y P Chuburin ${ }^{2}$
${ }^{1}$ Izhevsk State Technical University, Department of Physics, Studencheskaya Street, 7, Izhevsk 426069, Russia
${ }^{2}$ Physics-Technical Institute, Kirov Street, 132, Izhevsk 426000, Russia
E-mail: fizika@istu.ru and chuburin@otf.pti.udm.ru

Received 9 April 2008, in final form 8 September 2008
Published 1 October 2008
Online at stacks.iop.org/JPhysA/41/435205

Abstract

We consider the two-particle discrete Schrödinger operator H with a periodic potential perturbed by an exponentially decreasing interaction potential. This operator can be considered as the Hamiltonian of the two-magnon states of ferromagnets with periodically arranged impurities. The operator H can be naturally decomposed in the direct integral of spaces that is related to the analogous direct integral for the periodic operator. We show that the essential spectrum of H in the cell coincides with the band spectrum of the corresponding periodic operator. It is proved that for sufficiently small coupling constants there exists a unique quasi-level (an eigenvalue or a resonance) near the nondegenerate stationary points of eigenvalues of the periodic Schrödinger operator with respect to the chosen component of the quasimomentum. The asymptotic behavior of these quasi-levels for the coupling constant tending to zero is investigated. We obtain the simple sufficient condition when a quasi-level is an eigenvalue.

PACS numbers: 03.65.Ge, 02.70.Hm, 76.60.+g

1. Introduction

We consider the Hamiltonian on $l^{2}\left(\mathbb{Z}^{2}\right)$ given by

$$
\begin{equation*}
H=H_{0}+V(n)+W\left(n_{1}-n_{2}\right) \tag{1}
\end{equation*}
$$

with $n=\left(n_{1}, n_{2}\right) \in \mathbb{Z}^{2}$, where
$\left(H_{0} \psi\right)\left(n_{1}, n_{2}\right)=\psi\left(n_{1}+1, n_{2}\right)+\psi\left(n_{1}-1, n_{2}\right)+\psi\left(n_{1}, n_{2}+1\right)+\psi\left(n_{1}, n_{2}-1\right)$,
$V(n)$ is a real function periodic in n_{1}, n_{2} with period $T>0$ (if $V(n)$ is periodic in n_{j} with period $T_{j}>0, j=1,2$, then we set $T=T_{1} T_{2}$), and $W\left(n_{1}\right)$ is a real function satisfying the estimate

$$
\begin{equation*}
\left|W\left(n_{1}\right)\right| \leqslant C e^{-a\left|n_{1}\right|}, \quad a>0 \tag{2}
\end{equation*}
$$

We now discuss the physical interpretation of H. A two-magnon state for ferromagnets (or antiferromagnets) may by written in the form

$$
\begin{equation*}
\Psi=\sum_{n_{1}>n_{2},\left|n_{1}-n_{2}\right|=1} \psi\left(n_{1}, n_{2}\right) S_{n_{1}}^{+} S_{n_{2}}^{+}|0\rangle \tag{3}
\end{equation*}
$$

(see [1]). Here $\psi\left(n_{1}, n_{2}\right)$ are amplitudes, $S_{n_{j}}^{+}$is the atomic spin creation operator for the atom located at the lattice position n_{j}, and $|0\rangle$ is the ground state. The state Ψ is the eigenvector of the Heisenberg Hamiltonian [1]. By means of the Bethe ansatz, it can be proved (see [1]) that the function $\psi\left(n_{1}, n_{2}\right)$ satisfies the discrete Schrödinger equation of the form $H_{0} \psi=\lambda \psi, \lambda \in \mathbb{R}$. Consider now a ferromagnet with periodically arranged impurities. In this case, under some conditions (see [2]), the Schrödinger equation has the form $\left(H_{0}+V(n)\right) \psi=\lambda \psi$, where $V(n)=U\left(n_{1}\right)+U\left(n_{2}\right)$ for a certain periodic function U. Further, in our approach, we have the infinity sum in (3). Therefore instead of boundary conditions (see [1]), we introduce the potential $W\left(n_{1}-n_{2}\right)$ describing the interaction between the one-magnon states. So, we obtain the Hamiltonian of the form (1). Note that within this context, the function $\psi\left(n_{1}, n_{2}\right)$ is symmetric and, consequently, the function $W\left(n_{1}\right)$ should be even. A notion of the quasimomentum (the system momentum) may be rigorously introduced by means of the direct integral decomposition (see section 3).

The spectral properties and the eigenvalues of H with $V=0$ were investigated in [3, 4] for zero-range interactions. In the continuous case, the eigenvalues of the similar Hamiltonian were studied in [5] also for delta potentials.

The aim of this paper is to investigate the spectrum and the asymptotic behavior of quasilevels (i.e., eigenvalues and resonances) of the operator H in the cell. We also obtain the simple sufficient condition when a quasi-level is an eigenvalue.

We denote by $\sigma(A)$ and $\sigma_{\text {ess }}(A)$ the spectrum and the essential spectrum of the operator A, respectively.

2. Periodic operator

Let $\omega_{1} \subset \mathbb{Z}^{2}$ and let ω_{2} be a measurable subset of \mathbb{R}^{m}. We denote by $l^{2}\left(\omega_{1}\right) \otimes L^{2}\left(\omega_{2}\right)$ the Hilbert space of all measurable in k functions $\varphi(n, k)$ defined on $\omega_{1} \times \omega_{2}$ such that

$$
(\varphi, \varphi)=\sum_{n \in \omega_{1}} \int_{\omega_{2}} \varphi(n, k) \overline{\varphi(n, k)} \mathrm{d} k<\infty
$$

We apply the direct integral construction (see [6]) to our case. Let us introduce the following unitary operator:

$$
\begin{equation*}
U_{0}: l^{2}\left(\mathbb{Z}^{2}\right) \rightarrow l^{2}\left(\Omega_{0}\right) \otimes L^{2}\left(\Omega_{0}^{*}\right), \quad \varphi(n) \mapsto \frac{T}{2 \pi} \sum_{m \in \mathbb{Z}^{2}} \exp [-\mathrm{i}(k, m) T] \varphi(n+T m) \tag{4}
\end{equation*}
$$

Here $\Omega_{0}=[0,1, \ldots, T-1]^{2}$ is the cell of periods and $\Omega_{0}^{*}=[-\pi / T, \pi / T)^{2}$ is the cell in the reciprocal lattice. A vector k is called a quasimomentum. We have

$$
\begin{equation*}
\left(U_{0} \varphi\right)(n+T m, k)=\exp [\mathrm{i}(k, m) T]\left(U_{0} \varphi\right)(n, k) \tag{5}
\end{equation*}
$$

thus $\left(U_{0} \varphi\right)(n, k)$ is a Bloch function.

The direct integral is introduced as

$$
\int_{\Omega_{0}^{*}}^{\oplus} l^{2}\left(\Omega_{0}\right) \mathrm{d} k=l^{2}\left(\Omega_{0}\right) \otimes L^{2}\left(\Omega_{0}^{*}\right) \cong\left(L^{2}\left(\Omega_{0}^{*}\right)\right)^{T^{2}}
$$

It is easy to show that $U_{0} H_{V} U_{0}^{-1}=\left\{H_{V}(k)\right\}_{k \in \Omega_{0}^{*}}$ where the operators $H_{V}(k)=H_{0}(k)+V(n)$ act on $l^{2}\left(\Omega_{0}\right)$ similar to the operator H_{V} (if either $\left(n_{1} \pm 1, n_{2}\right)$ or $\left(n_{1}, n_{2} \pm 1\right)$ does not belong to Ω_{0} then we use (5)). Clearly, $H_{V}(k)$ is the matrix depending analytically with respect to k.

Consider the eigenvectors of the operator $H_{0}(k)$ of the form

$$
\psi_{m}(n, k)=\frac{1}{T} \exp \left[\mathrm{i}\left(k+\frac{2 \pi m}{T}, n\right)\right], \quad m \in \Omega_{0}
$$

corresponding to the eigenvalues

$$
\lambda_{m}(k)=2\left[\cos \left(k_{1}+\frac{2 \pi m_{1}}{T}\right)+\cos \left(k_{2}+\frac{2 \pi m_{2}}{T}\right)\right] .
$$

These vectors form the orthogonal basis in $l^{2}\left(\Omega_{0}\right)$. Therefore the Green function (the matrix of the resolvent $R_{0}(k, \lambda)=\left[H_{0}(k)-\lambda\right]^{-1}$ of $\left.H_{0}(k)\right)$ is given by
$G_{0}(n-m, k, \lambda)=\frac{1}{T} \sum_{\mu \in \Omega_{0}} \frac{\exp [\mathrm{i}(k+2 \pi \mu / T, n-m)]}{2\left[\cos \left(k_{1}+2 \pi \mu_{1} / T\right)+\cos \left(k_{2}+2 \pi \mu_{2} / T\right)\right]-\lambda}$,
where $n, m \in \Omega_{0}$.
We use the notation $R_{V}(\lambda)=\left(H_{V}-\lambda\right)^{-1}$ and $R_{V}(k, \lambda)=\left[H_{V}(k)-\lambda\right]^{-1}$ for the resolvent of operators H_{V} and $H_{V}(k)$, respectively. Denote by $G_{V}(n, m, \lambda)$ and $G_{V}(n, m, k, \lambda)$ the Green functions of these operators. From the resolvent identity

$$
\begin{equation*}
G_{V}(n, m, k, \lambda)=\left[1+R_{0}(k, \lambda) V\right]^{-1} G_{0}(n-m, k, \lambda) \tag{7}
\end{equation*}
$$

it follows that $G_{V}(n, m, k, \lambda)$ is analytic in (k, λ) in a complex neighborhood of any point $\left(k_{0}, \lambda_{0}\right) \in \mathbb{R}^{2} \times \mathbb{C} \subset \mathbb{C}^{2} \times \mathbb{C}$ such that $\lambda_{0} \notin \sigma\left(H_{V}\left(k_{0}\right)\right)$. (In the case $\lambda_{0} \in \sigma\left[H_{0}\left(k_{0}\right)\right]$ we use the change $\lambda \mapsto \lambda+\lambda^{\prime}, V \mapsto V+\lambda^{\prime}$ such that $\lambda_{0}+\lambda^{\prime} \notin \sigma\left[H_{0}\left(k_{0}\right)\right]$.)

Note that according to (7) and (6) the Green function $G_{V}(n, m, k, \lambda)$ can be naturally extended in n, m to $\mathbb{Z}^{2} \times \mathbb{Z}^{2}$ and, in addition,

$$
\begin{equation*}
G_{V}(n+T \mu, m, k, \lambda)=G_{V}(n, m-T \mu, k, \lambda)=\exp [\mathrm{i}(k, \mu) T] G_{V}(n, m, k, \lambda) \tag{8}
\end{equation*}
$$

Lemma 1. If $\lambda \notin \sigma\left(H_{V}\right)$, then

$$
\begin{equation*}
G_{V}(n, m, k, \lambda)=\sum_{\mu \in \mathbb{Z}^{2}} \exp [-\mathrm{i}(k, \mu) T] G_{V}(n+T \mu, m, \lambda) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{V}(n, m, \lambda)=\left(\frac{T}{2 \pi}\right)^{2} \int_{\Omega_{0}^{*}} G_{V}(n, m, k, \lambda) \mathrm{d} k \tag{10}
\end{equation*}
$$

Proof. Using (2) and (8), we get for $n \in \Omega_{0}, \mu \in \mathbb{Z}$

$$
\begin{aligned}
{\left[U_{0}^{-1} R_{V}(k, \lambda)\right.} & \left.U_{0} \varphi\right](n+T \mu)=\frac{T}{2 \pi} \int_{\Omega_{0}^{*}}(\exp [\mathrm{i}(k, \mu) T] \\
& \left.\times \sum_{m \in \Omega_{0}} G_{V}(n, m, k, \lambda) \frac{T}{2 \pi} \sum_{v \in \mathbb{Z}^{2}} \exp [-\mathrm{i}(k, \nu) T] \varphi(m+T \nu)\right) \mathrm{d} k \\
= & \left(\frac{T}{2 \pi}\right)^{2} \sum_{m \in \Omega_{0}} \sum_{v \in \mathbb{Z}^{2}} \int_{\Omega_{0}^{*}} G_{V}(n+T \mu, m+T v, k, \lambda) \varphi(m+T v) \mathrm{d} k \\
= & \left(\frac{T}{2 \pi}\right)^{2} \sum_{m \in \Omega} \int_{\Omega_{0}^{*}} G_{V}(n+T \mu, m, k, \lambda) \mathrm{d} k \varphi(m) .
\end{aligned}
$$

Consequently, we have (10). Therefore

$$
G_{V}(n+\mu T, m, k, \lambda)=\left(\frac{T}{2 \pi}\right)^{2} \int_{\Omega_{0}^{*}} \exp [\mathrm{i}(k, \mu) T] G_{V}(n, m, k, \lambda) \mathrm{d} k
$$

This proves (9).

3. Two-body interaction

Now we pass to the new cell $\Omega=\mathbb{Z} \times \Omega_{0}$ by means of the unitary operator

$$
\begin{aligned}
& U: l^{2}\left(\mathbb{Z}^{2}\right) \rightarrow l^{2}(\Omega) \otimes L^{2}\left(\Omega^{*}\right) \cong \int_{\Omega^{*}}^{\oplus} l^{2}(\Omega) \mathrm{d} \kappa \\
& \varphi(n) \mapsto\left(\frac{T}{2 \pi}\right)^{1 / 2} \sum_{\mu \in \mathbb{Z}} \exp (-\mathrm{i} \kappa \mu T) \varphi[n+(\mu, \mu) T] .
\end{aligned}
$$

Here $\Omega^{*}=[-\pi / T, \pi / T)$ and $\kappa \in \Omega^{*}$ is the quasimomentum.
It is easily seen that operators

$$
H(\kappa)=H_{0}(\kappa)+V(n)+W\left(n_{1}-n_{2}\right)
$$

from the decomposition $U H U^{-1}=\{H(\kappa)\}_{\kappa \in \Omega^{*}}$ act on $l^{2}(\Omega)$ analogously to the operator H taking into account (for $\left.H_{0}(\kappa)\right)$ the Bloch property

$$
(U \varphi)[n+(T, T), \kappa]=\exp (\mathrm{i} \kappa T) \varphi(n, \kappa)
$$

We use the following notation:

$$
\begin{array}{ll}
\left\{H_{V}^{\prime}(\kappa)\right\}_{\kappa \in \Omega^{*}}=U H_{V} U^{-1}, & \left\{H^{\prime}(\kappa)\right\}_{\kappa \in \Omega^{*}}=U H U^{-1} \\
R_{V}^{\prime}(\kappa, \lambda)=\left[H_{V}^{\prime}(\kappa)-\lambda\right]^{-1}, & R^{\prime}(\kappa, \lambda)=\left[H^{\prime}(\kappa)-\lambda\right]^{-1}
\end{array}
$$

Denote by $G_{V}^{\prime}(n, m, \kappa, \lambda)$ the Green function of the operator $H_{V}^{\prime}(\kappa)$.
The following equality can be proved in the same way as formula (9):

$$
\begin{equation*}
G_{V}^{\prime}(n, m, \kappa, \lambda)=\sum_{\mu \in \mathbb{Z}} \exp (-\mathrm{i} \kappa \mu T) G_{V}[n+\mu T(1,1), m, \lambda] . \tag{11}
\end{equation*}
$$

Lemma 2. The spectrum of $H_{V}^{\prime}(\kappa)$ can be represented as

$$
\begin{equation*}
\sigma\left[H_{V}^{\prime}(\kappa)\right]=\bigcup_{k_{1}+k_{2}=\kappa} \sigma\left[H_{V}(k)\right] \tag{12}
\end{equation*}
$$

Proof. Let us choose the cell in the reciprocal lattice for $H_{V}(k)$ of the form

$$
\omega_{0}^{*}=\left\{-\pi / T \leqslant k_{1} \leqslant \pi / T ;-\pi / T \leqslant k_{1}+k_{2} \leqslant \pi / T\right\} .
$$

We have (see (4))

$$
\begin{aligned}
\left(U_{0} \varphi\right)(n, k)= & \frac{T}{2 \pi} \sum_{m_{1}, m_{2} \in \mathbb{Z}} \exp \left[-\mathrm{i}\left(k_{1} m_{1}+k_{2} m_{2}\right) T\right] \varphi\left[n+T\left(m_{1}, m_{2}\right)\right] \\
= & \frac{T}{2 \pi} \sum_{\mu, v \in \mathbb{Z}} \exp [-\mathrm{i}(\sigma \mu+\kappa v) T] \varphi[n+T(\nu, v)+T(\mu, 0)] \\
= & \left(\frac{T}{2 \pi}\right)^{1 / 2} \sum_{\mu \in \mathbb{Z}} \exp (-\mathrm{i} \sigma \mu T) \\
& \times\left\{\left(\frac{T}{2 \pi}\right)^{1 / 2} \sum_{\nu \in \mathbb{Z}} \exp (-\mathrm{i} \kappa \nu T) \varphi[n+T(\nu, \nu)+T(\mu, 0)]\right\}
\end{aligned}
$$

where $\sigma=k_{1}, \mu=m_{1}-m_{2}, \kappa=k_{1}+k_{2}, v=m_{2}$. Thus U_{0} is unitarily equivalent to the product of operators $U^{\prime} U$, where the unitary operator

$$
U^{\prime}: L^{2}\left(\Omega \times \Omega^{*}\right) \rightarrow L^{2}\left(\Omega_{0} \times \Omega_{0}^{*}\right)
$$

is defined by

$$
\left(U^{\prime} \varphi\right)(n, \sigma, \kappa)=\left(\frac{T}{2 \pi}\right)^{1 / 2} \sum_{\mu \in \mathbb{Z}} \exp (-\mathrm{i} \sigma \mu T) \varphi[n+T(\mu, 0), \kappa]
$$

Hence the operators $H_{V}\left(k_{1}, \kappa-k_{1}\right)$ where $k_{1}=\sigma \in[-\pi / T, \pi / T)$ form the decomposition of the operators $H_{V}^{\prime}(\kappa)$ in the direct integral

$$
\int_{[-\pi / T, \pi / T)}^{\oplus} L^{2}\left(\Omega_{0}\right) \mathrm{d} k_{1}
$$

Denote by $\lambda_{n}\left(k_{1}, \kappa-k_{1}\right)$ the nth eigenvalue of $H_{V}\left(k_{1}, \kappa-k_{1}\right)$ counted in the increasing order with their multiplicities. It follows from the perturbation theory that $\lambda_{n}\left(k_{1}, \kappa-k_{1}\right)$ depends continuously on k_{1}. From this and [6] (theorem XIII.85) we get (12).
Lemma 3. Suppose $\lambda \notin \sigma\left(H_{V}^{\prime}\right)$. Then

$$
\begin{equation*}
G_{V}^{\prime}(n, m, \kappa, \lambda)=\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T} G_{V}\left[n, m,\left(k_{1}, \kappa-k_{1}\right), \lambda\right] \mathrm{d} k_{1} \tag{13}
\end{equation*}
$$

Proof. Using (11), (10) and the Bloch property of $G_{V}(n, m, k, \lambda)$, we have

$$
\begin{aligned}
G_{V}^{\prime}(n, m, \kappa, \lambda)= & \sum_{\mu \in \mathbb{Z}} \exp (-\mathrm{i} \kappa \mu T)\left(\frac{T}{2 \pi}\right)^{2} \int_{\Omega_{0}^{*}} G_{V}[n+\mu T(1,1), m, k, \lambda] \mathrm{d} k \\
= & \left(\frac{T}{2 \pi}\right)^{2} \frac{2 \pi}{T} \int_{-\pi / T}^{\pi / T}\left[\left(\frac{T}{2 \pi}\right)^{1 / 2} \sum_{\mu \in \mathbb{Z}} \exp \left[-\mathrm{i} \mu T\left(\kappa-k_{1}\right)\right]\right. \\
& \left.\times \int_{-\pi / T}^{\pi / T}\left(\frac{T}{2 \pi}\right)^{1 / 2} \exp \left(\mathrm{i} \mu T k_{2}\right) G_{V}(n, m, k, \lambda) \mathrm{d} k_{2}\right] \mathrm{d} k_{1} \\
= & \frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T} G_{V}\left[n, m,\left(k_{1}, \kappa-k_{1}\right), \lambda\right] \mathrm{d} k_{1} .
\end{aligned}
$$

Lemma 4. The function $W\left(n_{1}-n_{2}\right)$, as a multiplication operator, is the relatively compact perturbation of $H_{V}^{\prime}(\kappa)$.

Proof. The function $G_{V}\left[n, m,\left(k_{1}, \kappa-k_{1}\right)\right.$, i] depends analytically on k_{1}, hence its Fourier coefficients

$$
\left(\frac{T}{2 \pi}\right)^{1 / 2} \int_{-\pi / T}^{\pi / T} \exp \left(-\mathrm{i} \mu T k_{1}\right) G_{V}\left[n, m,\left(k_{1}, \kappa-k_{1}\right), \mathrm{i}\right] \mathrm{d} k_{1}
$$

exponentially decrease as $|\mu| \rightarrow \infty$. Using (13) and (2), we obtain

$$
\sum_{n \in \Omega} \sum_{m \in \Omega} \mid\left. G_{V}^{\prime}(n, m, \kappa, \text { i }) W\left(n_{1}-n_{2}\right)\right|^{2}
$$

$$
\leqslant C \sum_{\mu \in \mathbb{Z}} \sum_{v \in \mathbb{Z}} \sum_{n \in \Omega_{0}} \sum_{m \in \Omega_{0}}\left|\int_{-\pi / T}^{\pi / T} G_{V}\left[n+(\mu T, 0), m+(\nu T, 0),\left(k_{1}, \kappa-k_{1}\right), \mathrm{i}\right] \mathrm{d} k_{1}\right|^{2}
$$

$$
\times \exp \left(-a^{\prime}|\mu|\right) \leqslant C^{\prime} \sum_{\mu \in \mathbb{Z}} \sum_{v \in \mathbb{Z}} \exp \left(-a^{\prime \prime}|\mu-\nu|\right) \exp \left(-a^{\prime}|\mu|\right)<\infty
$$

where $a^{\prime}, a^{\prime \prime}>0$. Thus $W\left(n_{1}-n_{2}\right) R_{V}^{\prime}(\kappa, \mathrm{i})$ is the Hilbert-Schmidt operator.

Theorem 1. The following relations

$$
\sigma_{\mathrm{ess}}\left[H^{\prime}(\kappa)\right]=\sigma\left[H_{V}^{\prime}(\kappa)\right]=\bigcup_{k_{1}+k_{2}=\kappa} \sigma\left[H_{V}^{\prime}(k)\right]
$$

are valid.
Proof. It follows from lemmas 1, 3 and chapter XIII. 4 of [6].

4. Quasi-levels

We will treat the case where $\lambda_{0}=\lambda_{N}\left(k_{10}, \kappa-k_{10}\right)$ is a non-degenerate eigenvalue of $H_{V}\left(k_{10}, \kappa-k_{10}\right)$ corresponding to a normalized eigenvector $\psi_{N}\left[n,\left(k_{10}, \kappa-k_{10}\right)\right]$. It can be assumed that λ_{N} and ψ_{N} depend analytically on k_{1} in some complex neighborhood of k_{10} (see [6]). In what follows, we suppose that

$$
\frac{\partial \lambda_{N}\left(k_{10}, \kappa-k_{10}\right)}{\partial k_{1}}=0, \quad \frac{\partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right)}{\partial k_{1}^{2}} \neq 0
$$

Further, we assume that the number of points $k_{1} \neq k_{10}$ such that $\lambda_{M}\left(k_{1}, \kappa-k_{1}\right)=\lambda_{0}$ for some M is finite and at these points

$$
\frac{\partial \lambda_{M}\left(k_{1}, \kappa-k_{1}\right)}{\partial k_{1}} \neq 0 .
$$

In particular, the above conditions hold if the boundary point of some band of the spectrum of $H_{V}(\kappa)$ is determined by $\lambda_{N}\left(k_{1}, \kappa-k_{1}\right)$.

Set $\xi=k_{1}-k_{10}$.
Lemma 5. (see [7]). Let U be a sufficiently small complex neighborhood of λ_{0}. Then for any $\lambda \in U$ there exist two solutions $\xi_{j}=\xi_{j}(\lambda), j=1,2$ of the equation

$$
\lambda_{N}\left(k_{10}+\xi, \kappa-k_{10}-\xi\right)=\lambda
$$

such that $\xi_{1}\left(\lambda_{0}\right)=\xi_{2}\left(\lambda_{0}\right)$ and $\xi_{1}(\lambda) \neq \xi_{2}(\lambda)$ if $\lambda \neq \lambda_{0}$. Moreover, there exists the function $\xi_{2}=\mu\left(\xi_{1}\right)$ analytically depending on $\lambda \in U$ such that $\mu^{\prime}(0)=-1$.

Assume that $\xi_{1}(\lambda)>0$ if $\lambda>\lambda_{0}$. In the following, we often use the parameter $\xi_{1}=\xi_{1}(\lambda)$ instead of λ. Respectively, we use the notation $G_{V}^{\prime}\left(n, m, \kappa, \xi_{1}\right)$ instead of $G_{V}^{\prime}(n, m, \kappa, \lambda)$, etc.

Let U be a sufficiently small complex neighborhood of zero. Then the functions $\xi_{j}(\lambda), j=1,2$, generate the analytic covering \mathcal{V} over U [8] of two sheets. These functions form the unique analytic function ξ defined on \mathcal{V} and ξ is the analytic continuation of ξ_{1} (or $\left.\xi_{2}\right)$. Further, $\operatorname{sgn}(\operatorname{Im} \xi)$ corresponds to a certain sheet of \mathcal{V}.

The following lemmas 6 and 7 give the different representations of the Green function $G_{V}^{\prime}\left(n, m, \kappa, \xi_{1}\right)$.

In the following lemma 6 , we extend analytically the function $G_{V}^{\prime}\left(n, m, \kappa, \xi_{1}\right)$ to $U \backslash\{0\}$ in ξ_{1} where U is a neighborhood of zero. We set $\sqrt{W}=\sqrt{|W|} \operatorname{sgn} W$ (only for W).

Lemma 6. Let U be a sufficiently small complex neighborhood of zero. Then, for $\xi_{1} \in U \backslash\{0\}$, we have
$G_{V}^{\prime}\left(n, m, \kappa, \xi_{1}\right)=\frac{\mathrm{i} \psi_{N}\left[n,\left(k_{10}, \kappa-k_{10}\right)\right] \overline{\psi_{N}\left[m,\left(k_{10}, \kappa-k_{10}\right)\right]}}{\xi_{1} \partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2}}+g\left(n, m, \kappa, \xi_{1}\right)$,
where $\sqrt{|W(n)|} g\left(n, m, \kappa, \xi_{1}\right) \sqrt{W(m)}$ is the $l^{2}(\Omega \times \Omega)$-valued analytic function in ξ_{1}.

For a proof, see the similar result (lemma 2) in [7] for the one-particle periodic (nondiscrete) Schrödinger operator.
Corollary 1. The operator-valued function $\sqrt{|W|} R_{V}^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W}$ extends to a complex neighborhood of zero as a meromorphic function with respect to the parameter ξ_{1}. Moreover, this function takes its values in the set of Hilbert-Schmidt operators (see the proof of lemma 4).

Remark 1. From the resolvent identity

$$
\begin{equation*}
\left[1+\sqrt{|W|} R_{V}^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W}\right]^{-1}=1-\sqrt{|W|} R^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W} \tag{14}
\end{equation*}
$$

and Fredholm theorems $[6,9]$ we deduce that the operator-valued function $\sqrt{|W|} R^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W}$ is meromorphic in ξ_{1} in a neighborhood of zero and takes its values in the set of Hilbert-Schmidt operators.

Remark 2. Suppose that $V(n)=U\left(n_{1}\right)+U\left(n_{2}\right)$. Then we have $\lambda_{N}\left(k_{1}, \kappa-k_{1}\right)=$ $\lambda_{N_{1}}\left(k_{1}\right)+\lambda_{N_{2}}\left(\kappa-k_{10}\right)$ where $\lambda_{N_{1}}\left(k_{1}\right)\left(\lambda_{N_{2}}\left(\kappa-k_{10}\right)\right)$ are eigenvalues of the one-dimensional Schrödinger operator $h_{0}\left(k_{1}\right)+U\left(n_{1}\right)\left(h_{0}\left(\kappa-k_{1}\right)+U\left(n_{2}\right)\right.$, respectively) in the cell [0,T-1]. Here $h_{0}(k)(\psi)(n)=\psi(n+1)+\psi(n-1)$.

We put $k_{1 j}=k_{10}+\xi_{j}, j=1,2$.
Lemma 7. Let $\xi_{1} \neq 0$ be a sufficiently small complex number. Then the following equality holds:

$$
\begin{aligned}
G_{V}^{\prime}\left(n, m, \kappa, \xi_{1}\right) & =\frac{\mathrm{i} \psi_{N}\left[n,\left(k_{11}, \kappa-k_{11}\right)\right] \overline{\psi_{N}\left[m,\left(k_{11}, \kappa-k_{11}\right)\right]}}{\partial \lambda_{N}\left(k_{11}, \kappa-k_{11}\right) / \partial k_{1}} \vartheta\left(n_{1}-m_{1}\right) \\
& -\frac{\mathrm{i} \psi_{N}\left[n,\left(k_{12}, \kappa-k_{12}\right)\right] \overline{\psi_{N}\left[m,\left(k_{12}, \kappa-k_{12}\right)\right]}}{\partial \lambda_{N}\left(k_{12}, \kappa-k_{12}\right) / \partial k_{1}} \vartheta\left(m_{1}-n_{1}\right)+\gamma\left(n, m, \kappa, \xi_{1}\right) .
\end{aligned}
$$

Here $\vartheta(t)$ is the Heaviside function and γ satisfies the bound:

$$
\left|\gamma\left(n, m, \kappa, \xi_{1}\right)\right| \leqslant C \exp \left(-\sigma\left|n_{1}-m_{1}\right|\right), \quad \sigma>0
$$

The proof of the analogous result (for the periodic continuous Schrödinger operator) is given in [10].

We say that the pole of the operator-valued function $\sqrt{|W|} R^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W}$ with respect to ξ_{1} (and also the corresponding value $\lambda=\lambda_{N}\left(k_{10}+\xi_{1}, \kappa-k_{10}-\xi_{1}\right)$) is the quasi-level of $H^{\prime}(\kappa)$.

By virtue of (14) and analytic Fredholm theorem [9], a sufficiently small $\xi_{1} \neq 0$ is a quasi-level if and only if there exists a nontrivial solution of the equation

$$
\begin{equation*}
\varphi=-\sqrt{|W|} R_{V}^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W} \varphi \tag{15}
\end{equation*}
$$

in $l^{2}(\Omega)$.
Thus a quasi-level is an eigenvalue or a resonance.
Let $\xi_{1} \neq 0$ be a quasi-level. The number

$$
\operatorname{dim} \operatorname{ker}\left[1+\sqrt{|W|} R_{V}^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W}\right]
$$

is called the multiplicity of ξ_{1}.
Let $\varepsilon>0$ be a (small) parameter. Now we introduce the operator $H_{\varepsilon}^{\prime}(\kappa)=H_{0}^{\prime}(\kappa)+\varepsilon W$ where $H_{0}^{\prime}(\kappa)$ is taken from the decomposition $U H_{0} U^{-1}=\left\{H_{0}^{\prime}(\kappa)\right\}_{\kappa \in \Omega^{*}}$.

Theorem 2. Suppose that

$$
\begin{equation*}
W_{N}=\sum_{n \in \Omega} W\left(n_{1}-n_{2}\right)\left|\psi_{N}\left[n,\left(k_{10}, \kappa-k_{10}\right)\right]\right|^{2} \neq 0 \tag{16}
\end{equation*}
$$

Then we have the following.
(a) For all sufficiently small $\varepsilon>0$ there exists a unique quasi-level $\lambda=\lambda_{N}\left(k_{11}, \kappa-k_{11}\right)$ of $H^{\prime}(\kappa)$ of the multiplicity one.
(b) The following formula holds:

$$
\begin{equation*}
\lambda=\lambda_{0}-\frac{\varepsilon^{2} W_{N}^{2}}{2 \partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2}}+O\left(\varepsilon^{3}\right) \tag{17}
\end{equation*}
$$

(c) In addition to that, if

$$
\partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2} \cdot W_{N}<0
$$

then the quasi-level is the eigenvalue.
Proof. Using lemma 6, we rewrite (15) in the form
$\varphi(n)=-\frac{\mathrm{i} \varepsilon \varphi_{N}\left[n,\left(k_{10}, \kappa-k_{10}\right)\right]}{\xi_{1} \partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2}} \sum_{m \in \Omega} \overline{\varphi_{N}^{\prime}\left[m,\left(k_{10}, \kappa-k_{10}\right)\right]} \varphi(m)+\varepsilon A\left(\xi_{1}\right) \varphi(n)$,
where $\varphi_{N}=\sqrt{|W|} \psi_{N}, \varphi_{N}^{\prime}=\sqrt{W} \psi_{N}$, and $A\left(\xi_{1}\right)$ is the operator with the matrix $-\sqrt{|W|} g \sqrt{W}$. Set $f=\left[1-\varepsilon A\left(\xi_{1}\right)\right] \varphi$ for a sufficiently small ε. Then, by (18), $f=C \varphi_{N}$ where $C=$ const. Hence equation (15) has a nontrivial solution for $\xi_{1} \neq 0$ if and only if there exists a solution of the algebraic equation

$$
\begin{equation*}
\xi_{1}=-\frac{\mathrm{i} \varepsilon\left\{\left[1-\varepsilon A\left(\xi_{1}\right)\right]^{-1} \varphi_{N}, \varphi_{N}^{\prime}\right\}}{\partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2}} \tag{19}
\end{equation*}
$$

It follows from lemma 6 that the operator-valued function $A\left(\xi_{1}\right)$ is analytic in a neighborhood of zero. By virtue of the Rouche theorem, there exists a unique solution (quasi-level) ξ_{1} of (19). Using (19) and the expansion of $\left[1-\varepsilon A\left(\xi_{1}\right)\right]^{-1}$ in the Taylor series, we obtain the following formula:

$$
\begin{gather*}
\xi_{1}=\frac{\varepsilon}{\mathrm{i} \partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2}}\left(\sum_{n \in \Omega} W\left(n_{1}-n_{2}\right)\left|\psi_{N}\left[n,\left(k_{10}, \kappa-k_{10}\right)\right]\right|^{2}\right)+O\left(\varepsilon^{2}\right) \\
=\frac{\varepsilon W_{N}}{\mathrm{i} \partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2}}+O\left(\varepsilon^{2}\right) \tag{20}
\end{gather*}
$$

By (20) and (16), we have $\xi_{1} \neq 0$. Further, from the equality $\varphi=C\left(1-\varepsilon A\left(\xi_{1}\right)\right)^{-1} \varphi_{N}$ it follows that the quasi-level multiplicity is equal to unity.

Now we prove the last statement of the theorem. Suppose that $\varphi \neq 0$ belongs to $l^{2}(\Omega)$ and satisfies (15). Then the function

$$
\begin{equation*}
\psi=-\varepsilon R_{V}^{\prime}\left(\kappa, \xi_{1}\right) \sqrt{W} \varphi=-\varepsilon R_{V}^{\prime}\left(\kappa, \xi_{1}\right) W \psi \tag{21}
\end{equation*}
$$

satisfies the equation $H_{\varepsilon}^{\prime}(\kappa) \psi=\lambda \psi$ where $\lambda=\lambda_{N}\left(k_{10}+\xi_{1}, \kappa-k_{10}-\xi_{1}\right)$. (Obviously, $\varphi=\sqrt{|W|} \psi)$. Therefore it will suffice to prove that $\psi \in l^{2}(\Omega)$. By lemma 7, we have

$$
\begin{align*}
& \psi(n)=-\frac{\mathrm{i} \varepsilon \psi_{N}}{\left.\mathrm{i} \partial \lambda_{N}\left(k_{11}, \kappa-k_{11}, \kappa-k_{11}\right)\right]} \\
& \times \sum_{m \in \Omega \cap\left\{m_{1}<n_{1}\right\}} \overline{\psi_{N}\left[m,\left(k_{11}, \kappa-k_{11}\right)\right]} \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m) \\
&+\frac{\mathrm{i} \varepsilon \psi_{N}\left[n,\left(k_{12}, \kappa-k_{12}\right)\right]}{\mathrm{i} \partial \lambda_{N}\left(k_{12}, \kappa-k_{12}\right) / \partial k_{1}} \\
& \times \sum_{m \in \Omega \cap\left\{m_{1} \geqslant n_{1}\right\}} \overline{\psi_{N}\left[m,\left(k_{12}, \kappa-k_{12}\right)\right]} \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m) \\
&-\varepsilon \sum_{m \in \Omega} \gamma\left(n, m, \xi_{1}\right) \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m) \tag{22}
\end{align*}
$$

Suppose $n_{1} \geqslant 0$. Using lemma 7 , the Cauchy inequality and (2), we obtain

$$
\begin{align*}
&\left|\sum_{m \in \Omega} \gamma\left(n, m, \xi_{1}\right) \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m)\right|^{2} \\
& \leqslant C \sum_{m \in \Omega}\left|\gamma\left(n, m, \xi_{1}\right)\right|^{2}\left|W\left(m_{1}-m_{2}\right)\right| \leqslant C_{1} \sum_{m_{1} \in \mathbb{Z}} \exp \left(-2 \sigma\left|n_{1}-m_{1}\right|-a\left|m_{1}\right|\right) \\
&= C_{1}\left(\sum_{m_{1} \geqslant n_{1}} \exp \left[-2 \sigma\left(m_{1}-n_{1}\right)-a m_{1}\right]+\sum_{0 \leqslant m_{1}<n_{1}} \exp \left[-2 \sigma\left(n_{1}-m_{1}\right)-a m_{1}\right]\right. \\
&+\sum_{m_{1}<0} \exp \left[-2 \sigma\left(n_{1}-m_{1}\right)+a m_{1}\right]=C_{1}\left(\exp \left(2 \sigma n_{1}\right) \frac{\exp \left[-(2 \sigma+a) n_{1}\right]}{1-\exp [-(2 \sigma+a)]}\right. \\
&\left.+\exp \left(-2 \sigma n_{1}\right) \frac{1+\exp \left[(2 \sigma-a) n_{1}\right]}{1-\exp (2 \sigma-a)}+\exp \left(-2 \sigma n_{1}\right) \frac{\exp [-(2 \sigma+a)]}{1-\exp [-(2 \sigma+a)]}\right) \tag{23}
\end{align*}
$$

This expression decreases exponentially as $n_{1} \rightarrow \infty$. Evidently, the analogous result is true for $n_{1} \leqslant 0$.

We note that from the equality

$$
\begin{equation*}
\psi_{N}(n, k)=-\sum_{m \in \Omega_{0}} G_{V}\left[n-m, k, \lambda_{N}(k)\right] V(m) \psi_{N}(m, k) \tag{24}
\end{equation*}
$$

and (6) it follows that

$$
\begin{equation*}
\left|\psi_{N}(n, k)\right| \leqslant \exp \left(\left|\operatorname{Im} k_{1}\right|\left|n_{1}\right|+\left|\operatorname{Im} k_{2}\right|\left|n_{2}\right|\right) \tag{25}
\end{equation*}
$$

for k belonging to some complex neighborhood of $k_{0} \in \Omega_{0}^{*}$.
Let $n_{1} \geqslant 0$ and let $\left|\xi_{1}\right| \leqslant \delta<a / 2$ where a is taken from (2). From (25) and (2) we get

$$
\begin{align*}
& \left|\sum_{m \in \Omega \cap\left\{m_{1} \geqslant n_{1}\right\}} \frac{}{\psi_{N}\left[m,\left(k_{1 j}, \kappa-k_{1 j}\right)\right]} \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m)\right| \\
& \leqslant C\left[\sum_{m_{1}=n_{1}}^{\infty} \exp \left[\left(2 \delta-a^{\prime}\right) m_{1}\right]\right]^{1 / 2}=C \frac{\exp \left[\left(2 \delta-a^{\prime}\right) n_{1}\right]}{1-\exp (2 \delta-a)}, \quad j=1,2 . \tag{26}
\end{align*}
$$

By virtue of (22), (23), and (26) we obtain

$$
\begin{align*}
\psi(n)=- & \frac{\mathrm{i} \varepsilon \psi_{N}\left[n,\left(k_{11}, \kappa-k_{11}\right)\right]}{\mathrm{i} \partial \lambda_{N}\left(k_{11}, \kappa-k_{11}\right) / \partial k_{1}} \\
& \quad \times \sum_{m \in \Omega} \overline{\psi_{N}\left[m,\left(k_{11}, \kappa-k_{11}\right)\right]} \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m)+\eta_{+}(n) \tag{27}
\end{align*}
$$

for $n_{1} \geqslant 0$ where $\eta_{+} \in l^{2}\left(\Omega \cap\left\{n_{1} \geqslant 0\right\}\right)$. Similarly,

$$
\begin{align*}
\psi(n)=- & \frac{\mathrm{i} \varepsilon \psi_{N}\left[n,\left(k_{12}, \kappa-k_{12}\right)\right]}{\mathrm{i} \partial \lambda_{N}\left(k_{12}, \kappa-k_{12}\right) / \partial k_{1}} \\
& \quad \times \sum_{m \in \Omega} \overline{\psi_{N}\left[m,\left(k_{12}, \kappa-k_{12}\right)\right]} \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m)+\eta_{-}(n) \tag{28}
\end{align*}
$$

for $n_{1} \leqslant 0$ and $\eta_{-} \in l^{2}\left(\Omega \cap\left\{n_{1} \leqslant 0\right\}\right)$.

Using (6), we rewrite (24) as

$$
\begin{aligned}
\psi_{N}\left[n,\left(k_{1}, \kappa-\right.\right. & \left.\left.k_{1}\right)\right]=-\frac{1}{T} \exp \left\{\mathrm{i}\left[\left(k_{1}, \kappa-k_{1}\right), n\right]\right\} \\
& \times \sum_{\mu \in \Omega_{0}} \sum_{m \in \Omega_{0}} \frac{\exp [\mathrm{i}(2 \pi \mu / T, n)] \exp \left[-\mathrm{i}\left(\left(k_{1}, \kappa-k_{1}\right)+2 \pi \mu / T, m\right)\right]}{2\left[\cos \left(k_{1}+2 \pi \mu_{1} / T\right)+\cos \left(\kappa-k_{1}+2 \pi \mu_{2} / T\right)\right]-\lambda_{N}\left(k_{1}, \kappa-k_{1}\right)} \\
& \times V(m) \psi_{N}\left[m,\left(k_{1}, \kappa-k_{1}\right)\right] .
\end{aligned}
$$

Therefore, $\left|\psi_{N}\right|$ decreases exponentially (increases exponentially) as $n_{1} \rightarrow \infty$ or $n_{1} \rightarrow-\infty$ in the case $\operatorname{Im} n_{1} k_{1}>0$ (in the case $\operatorname{Im} n_{1} k_{1}<0$, respectively). Now the last statement of the theorem is the consequence of (20), (27), (28), lemma 5 and the equalities $\operatorname{Im} k_{1 j}=\operatorname{Im} \xi_{1 j}, j=1,2$.
Remark 3. Under the conditions of theorem 2, the eigenfunction $\psi(n)$ of the operator $H^{\prime}(\kappa)$ satisfies the estimate

$$
|\psi(n)| \leqslant C e^{-\alpha|n|}, \quad \alpha>0
$$

for $n \in \mathbb{Z}$.
Remark 4. In the case $V=0$,

$$
G_{V}^{\prime}(n, m, \kappa, \lambda)=-\frac{\exp [\mathrm{i} k(n-m) / 2]}{\sqrt{\lambda^{2}-16 \cos ^{2}(\kappa / 2)}}\left[g\left(\frac{\lambda}{4 \cos (\kappa / 2)}\right)\right]^{|n-m|}
$$

where $g(w)=w-\sqrt{w^{2}-1}$. (This function is inverse of $w=\frac{1}{2}(z+1 / z)$.) The formula (17) can be rewritten as

$$
\lambda= \pm\left(4 \cos (\kappa / 2)+\frac{\varepsilon^{2} W_{0}}{8 \cos (\kappa / 2)}\right)+O\left(\varepsilon^{3}\right)
$$

where $W_{0}=\sum_{n_{1} \in \mathbb{Z}} W\left(n_{1}\right)$. (Here $\pm 4 \cos (\kappa / 2)$ are the boundary points of the spectrum of $\left.H_{0}^{\prime}(\kappa).\right)$

Remark 5. Suppose that

$$
\partial^{2} \lambda_{N}\left(k_{10}, \kappa-k_{10}\right) / \partial k_{1}^{2} \cdot W_{N}>0 .
$$

Then $\operatorname{Im} \xi_{1}<0$ and ξ_{1} is the resonance. In addition, if

$$
\sum_{m \in \Omega} \overline{\psi_{N}\left[m,\left(k_{1 j}, \kappa-k_{1 j}\right)\right]} \sqrt{W\left(m_{1}-m_{2}\right)} \varphi(m) \neq 0, \quad j=1,2,
$$

then the solution $\psi(n)$ of (21) (the metastable state) increases exponentially as $\left|n_{1}\right| \rightarrow \infty$ (see the proof of theorem 2).

5. Concluding remarks

Let $H_{\varepsilon}^{\prime}(\kappa)$ be the Hamiltonian of the pairs of the interacting one-magnon states in a ferromagnet with periodically placed impurities; here κ is a lattice quasimomentum and ε is a coupling constant for the magnon-magnon interaction. Let us consider the periodic discrete Schrödinger operator $H_{V}(k)$ (the Hamiltonian without the interaction) where k is a periodic quasimomentum. Let $\lambda_{n_{0}}(k)$ be an eigenvalue of $H_{V}(k)$ such that $\left(k_{10}, \kappa-k_{10}\right)$ is a non-degenerate stationary point of $\lambda_{n_{0}}(k)$ with respect to k_{1}. Then for any sufficiently small ε there exist the unique quasi-levels (the eigenvalue or the resonance) of $H_{\varepsilon}^{\prime}(\kappa)$ in some neighborhood of $\lambda_{0}=\lambda_{n_{0}}\left(k_{10}, \kappa-k_{10}\right)$. We obtain the asymptotic formula for this quasi-levels as $\varepsilon \rightarrow 0$. We also find the simple condition when a quasi-level is an eigenvalue.

References

[1] Mattis D C 1965 The Theory of Magnetism. An Introduction to the Study of Cooperative Phenomena (New York: Harper and Row)
[2] Wolfram T and Callaway J 1963 Phys. Rev. 130 2207-17
[3] Abdullaev J I and Lakaev S N 2003 Theor. Math. Phys. 136 1096-109
[4] Faria da Veiga P A, Ioriatti L and O’Carrol M 2002 Phys. Rev. E 66 016130-1-016130-9
[5] Mahajan S M and Thyagaraja A 2006 J. Phys. A: Math. Gen. 39 L667-71
[6] Reed M and Simon B 1978 Methods of Modern Mathematical Physics IV: Analysis of Operators (New York: Academic)
[7] Chuburin Y P 1997 Theor. Math. Phys. 110 351-9
[8] Gunning R C and Rossi H 1965 Analytic Functions of Several Complex Variables (New York: Prentice-Hall)
[9] Reed M and Simon B 1972 Methods of Modern Mathematical Physics I: Functional Analysis (New York: Academic)
[10] Chuburin Y P 1994 Theor. Math. Phys. 98 27-33

